首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   6篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1972年   1篇
  1948年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
41.
Kinetics of veratridine action on Na channels of skeletal muscle   总被引:15,自引:8,他引:7       下载免费PDF全文
Veratridine bath-applied to frog muscle makes inactivation of INa incomplete during a depolarizing voltage-clamp pulse and leads to a persistent veratridine-induced Na tail current. During repetitive depolarizations, the size of successive tail currents grows to a plateau and then gradually decreases. When pulsing is stopped, the tail current declines to zero with a time constant of approximately 3 s. Higher rates of stimulation result in a faster build-up of the tail current and a larger maximum value. I propose that veratridine binds only to open channels and, when bound, prevents normal fast inactivation and rapid shutting of the channel on return to rest. Veratridine-modified channels are also subject to a "slow" inactivation during long depolarizations or extended pulse trains. At rest, veratridine unbinds with a time constant of approximately 3 s. Three tests confirm these hypotheses: (a) the time course of the development of veratridine-induced tail currents parallels a running time integral of gNa during the pulse; (b) inactivating prepulses reduce the ability to evoke tails, and the voltage dependence of this reduction parallels the voltage dependence of h infinity; (c) chloramine-T, N-bromoacetamide, and scorpion toxin, agents that decrease inactivation in Na channels, each greatly enhance the tail currents and alter the time course of the appearance of the tails as predicted by the hypothesis. Veratridine-modified channels shut during hyperpolarizations from -90 mV and reopen on repolarization to -90 mV, a process that resembles normal activation gating. Veratridine appears to bind more rapidly during larger depolarizations.  相似文献   
42.
Permanent mounting of fourth instar mosquito larvae is essential for identifying Aedes spp. This procedure requires extensive exposure to xylene, a clearing agent in the mounting process. We investigated wintergreen oil as a substitute for xylene. Five hundred larvae were mounted on slides to evaluate shrinkage or expansion of specimens after clearing using xylene or wintergreen oil. We examined the ventral brush and siphonal hair tufts for species identification and for preservation of morphological characteristics after clearing specimens in xylene or wintergreen oil. Shrinkage of the length of whole larvae and width of the head, thorax and abdomen after mounting was significantly greater after clearing with xylene than with wintergreen oil. The length of the comb scale nearest the ventral brush was similar for both clearing agents. The clarity of the specimens after mounting was improved by clearing with wintergreen oil, but the integrity of the ventral brush and siphonal hair tufts were similar for both clearing agents.  相似文献   
43.
44.
45.
The structure of pseudorabies virus (PRV) capsids isolated from the nucleus of infected cells and from PRV virions was determined by cryo-electron microscopy (cryo-EM) and compared to herpes simplex virus type 1 (HSV-1) capsids. PRV capsid structures closely resemble those of HSV-1, including distribution of the capsid vertex specific component (CVSC) of HSV-1, which is a heterodimer of the pUL17 and pUL25 proteins. Occupancy of CVSC on all PRV capsids is near 100%, compared to ~ 50% reported for HSV-1 C-capsids and 25% or less that we measure for HSV-1 A- and B-capsids. A PRV mutant lacking pUL25 does not produce C-capsids and lacks visible CVSC density in the cryo-EM-based reconstruction. A reconstruction of PRV capsids in which green fluorescent protein was fused within the N-terminus of pUL25 confirmed previous studies with a similar HSV-1 capsid mutant localizing pUL25 to the CVSC density region that is distal to the penton. However, comparison of the CVSC density in a 9-Å-resolution PRV C-capsid map with the available crystal structure of HSV-1 pUL25 failed to find a satisfactory fit, suggesting either a different fold for PRV pUL25 or a capsid-bound conformation for pUL25 that does not match the X-ray model determined from protein crystallized in solution. The PRV capsid imaged within virions closely resembles C-capsids with the addition of weak but significant density shrouding the pentons that we attribute to tegument proteins. Our results demonstrate significant structure conservation between the PRV and HSV capsids.  相似文献   
46.
47.

Background

The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp.) variability of the reaction wood (RW) response and the impact of this variation on cell wall recalcitrance to enzymatic saccharification was considered.

Results

A pot trial was designed to test if the ‘RW response’ varies between willow genotypes and contributes to the differences observed in cell wall recalcitrance to enzymatic saccharification in field-grown trees. Biomass composition was measured via wet chemistry and used with glucose release yields from enzymatic saccharification to determine cell wall recalcitrance. The levels of glucose release found for pot-grown control trees showed no significant correlation with glucose release from mature field-grown trees. However, when a RW phenotype was induced in pot-grown trees, glucose release was strongly correlated with that for mature field-grown trees. Field studies revealed a 5-fold increase in glucose release from a genotype grown at a site exposed to high wind speeds (a potentially high RW inducing environment) when compared with the same genotype grown at a more sheltered site.

Conclusions

Our findings provide evidence for a new concept concerning variation in the recalcitrance to enzymatic hydrolysis of the stem biomass of different, field-grown willow genotypes (and potentially other angiosperms). Specifically, that genotypic differences in the ability to produce a response to RW inducing conditions (a ‘RW response’) indicate that this RW response is a primary determinant of the variation observed in cell wall glucan accessibility. The identification of the importance of this RW response trait in willows, is likely to be valuable in selective breeding strategies in willow (and other angiosperm) biofuel crops and, with further work to dissect the nature of RW variation, could provide novel targets for genetic modification for improved biofuel feedstocks.
  相似文献   
48.
Free radical-induced double lesions in DNA   总被引:7,自引:0,他引:7  
This review surveys the work that has been done on free radical-induced DNA double lesions. Double lesions consist of two modifications of the DNA in close proximity. Double lesions can be generated by a single free radical-initiating event and the mechanism of formation often involves the participation of guanine. The identification of double lesions in oligomer and polymer DNA is reviewed and possible mechanisms of formation are outlined. The potential biological significance of double lesions is discussed. Double lesions induced by UV light are outside the scope of this review.  相似文献   
49.
The products produced by X irradiation of an oxygenated aqueous solution containing d(CpApTpG) were analyzed by NMR spectroscopy and mass spectrometry. Thirteen different base modifications were detected, including a novel product formed by the addition of oxygen to guanine. Seven different strand break products were identified, including strands having 5'-phosphoryl groups, 3'-phosphoryl groups and groups having 3'-phosphoglycolates as termini. The products produced in largest yield contained base modifications: Pyrimidine bases degraded to a formamido moiety, the 8-oxo-7,8-dihydroguanine (8-oxoguanine) lesion, and double base lesions in which both the 8-oxo-7,8-dihydroguanine lesion and a formamido remnant are present.  相似文献   
50.
Expression of a California bay lauroyl-acyl carrier protein thioesterase (MCTE) in developing seeds of transgenic oilseed rape alters the fatty acid composition of the mature seed, resulting in up to 60 mol% of laurate in triacylglycerols. In this study, we examined the metabolism of lauric acid and 14C-acetate in developing seeds of oilseed rape that express high levels of MCTE. Lauroyl-CoA oxidase activity but not palmitoyl-CoA oxidase activity was increased several-fold in developing seeds expressing MCTE. In addition, isocitrate lyase and malate synthase activities were six- and 30-fold higher, respectively, in high-laurate developing seeds. Control seeds incorporated 14C-acetate almost entirely into fatty acids, whereas in seeds expressing MCTE, only 50% of the label was recovered in lipids and the remainder was in a range of water-soluble components, including sucrose and malate. Together, these results indicate that the pathways for beta-oxidation and the glyoxylate cycle have been induced in seeds expressing high levels of MCTE. Although a substantial portion of the fatty acid produced in these seeds is recycled to acetyl-CoA and sucrose through the beta-oxidation and glyoxylate cycle pathways, total seed oil is not reduced. How is oil content maintained if lauric acid is inefficiently converted to triacylglycerol? The levels of acyl carrier protein and several enzymes of fatty acid synthesis were increased two- to threefold at midstage development in high-laurate seeds. These results indicate that a coordinate induction of the fatty acid synthesis pathway occurs, presumably to compensate for the lauric acid lost through beta-oxidation or for a shortage of long-chain fatty acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号